A novel chaotic neural network architecture

نویسندگان

  • Nigel Crook
  • Tjeerd Olde Scheper
چکیده

The basic premise of this research is that deterministic chaos is a powerful mechanism for the storage and retrieval of information in the dynamics of artificial neural networks. Substantial evidence has been found in biological studies for the presence of chaos in the dynamics of natural neuronal systems [1-3]. Many have suggested that this chaos plays a central role in memory storage and retrieval [1,4-6]. Indeed, chaos offers many advantages over alternative memory storage mechanisms used in artificial neural networks. One is that chaotic dynamics are significantly easier to control than other linear or non-linear systems, requiring only small appropriately timed perturbations to constrain them within specific Unstable Periodic Orbits (UPOs). Another is that chaotic attractors contain an infinite number of these UPOs. If individual UPOs can be made to represent specific internal memory states of a system, then in theory a chaotic attractor can provide an infinite memory store for the system. In this paper we investigate the possibility that a network can self-select UPOs in response to specific dynamic input signals. These UPOs correspond to network recognition states for these input signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION

A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...

متن کامل

بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه

In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...

متن کامل

Learning Chaotic Dynamics using Tensor Recurrent Neural Networks

We present Tensor-RNN, a novel RNN architecture for multivariate forecasting in chaotic dynamical systems. Our proposed architecture captures highly nonlinear dynamic behavior by using high-order Markov states and transition functions. Furthermore, we decompose the highdimensional structure of the model using tensortrain networks to reduce the number of parameters while preserving the model per...

متن کامل

Evolutionary Neural Networks with Mixed-Integer Hybrid Differential Evolution

A novel application to the optimization of neural networks is presented in this paper. Here, the weight and architecture optimization of neural networks can be formulated as a mixed-integer optimization problem. And then a mixed-integer evolutionary algorithm (Mixed-Integer Hybrid Differential Evolution, MIHDE) is used to optimize the neural network. Finally, the optimized neural network is app...

متن کامل

A Neural Network Architecture for Prediction

This report describes a neural network architecture ClusNet designed for the prediction of chaotic time series. It advantages include simplicity, fast and sure convergence, and less need for computing resources. After describing its architecture and learning algorithms, its prediction perfo1:mance on the Logistic and the Mackay-Class chaotic time series is presented. Compared to other current p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001